- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Beaucejour, Rossiny (3)
-
Olsson, Roy H. (2)
-
Ansari, Azadeh (1)
-
Beechem, Thomas E. (1)
-
Chae, Chris (1)
-
Choi, Sukwon (1)
-
Dargis, Rytis (1)
-
D’Agati, Michael (1)
-
Esteves, Giovanni (1)
-
Foley, Brian M. (1)
-
Hodge, Michael David (1)
-
Huang, Hsien-Lien (1)
-
Hwang, Jinwoo (1)
-
Jones, Jeremy (1)
-
Kalyan, Kritank (1)
-
Kochhar, Abhay (1)
-
Lavelle, Robert M. (1)
-
Leach, Jacob H. (1)
-
Lundh, James Spencer (1)
-
Maria, Jon-Paul (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thin film through-thickness stress gradients produce out-of-plane bending in released microelectromechanical systems (MEMS) structures. We study the stress and stress gradient of Al0.68Sc0.32N thin films deposited directly on Si. We show that Al0.68Sc0.32N cantilever structures realized in films with low average film stress have significant out-of-plane bending when the Al1−xScxN material is deposited under constant sputtering conditions. We demonstrate a method where the total process gas flow is varied during the deposition to compensate for the native through-thickness stress gradient in sputtered Al1−xScxN thin films. This method is utilized to reduce the out-of-plane bending of 200 µm long, 500 nm thick Al0.68Sc0.32N MEMS cantilevers from greater than 128 µm to less than 3 µm.more » « less
-
Beaucejour, Rossiny; Roebisch, Volker; Kochhar, Abhay; Moe, Craig G.; Hodge, Michael David; Olsson, Roy H. (, Journal of Microelectromechanical Systems)
-
Song, Yiwen; Zhang, Chi; Lundh, James Spencer; Huang, Hsien-Lien; Zheng, Yue; Zhang, Yingying; Park, Mingyo; Mirabito, Timothy; Beaucejour, Rossiny; Chae, Chris; et al (, Journal of Applied Physics)AlN thin films are enabling significant progress in modern optoelectronics, power electronics, and microelectromechanical systems. The various AlN growth methods and conditions lead to different film microstructures. In this report, phonon scattering mechanisms that impact the cross-plane (κz; along the c-axis) and in-plane (κr; parallel to the c-plane) thermal conductivities of AlN thin films prepared by various synthesis techniques are investigated. In contrast to bulk single crystal AlN with an isotropic thermal conductivity of ∼330 W/m K, a strong anisotropy in the thermal conductivity is observed in the thin films. The κz shows a strong film thickness dependence due to phonon-boundary scattering. Electron microscopy reveals the presence of grain boundaries and dislocations that limit the κr. For instance, oriented films prepared by reactive sputtering possess lateral crystalline grain sizes ranging from 20 to 40 nm that significantly lower the κr to ∼30 W/m K. Simulation results suggest that the self-heating in AlN film bulk acoustic resonators can significantly impact the power handling capability of RF filters. A device employing an oriented film as the active piezoelectric layer shows an ∼2.5× higher device peak temperature as compared to a device based on an epitaxial film.more » « less
An official website of the United States government
